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ABSTRACT 
A finite difference scheme for convection term discretization, called BSOU (stands for Bounded Second Order 
Upwind), is developed and its performance is assessed against exact or benchmark solutions in linear and 
non-linear cases. It employs a flux blending technique between first order upwind and second order upwind 
schemes only in those regions of the flow field where spurious oscillations are likely to occur. 
The blending factors are calculated with the aid of the convection boundedness criterion. In all cases the 
scheme performed very well, minimizing the numerical diffusion errors. The scheme is transportive, 
conservative, bounded, stable and accurate enough so as to be suitable for inclusion into a general purpose 
solution algorithm. 
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NOMENCLATURE 

AE, Aw etc. 

BSOU 
FOU 
Re 
SOU 
TVD 
ui 
U,V 

Coefficients of finite difference 
equations 
Bounded Second Order Upwind 
First Order Upwind 
Reynolds number 
Second Order Upwind 
Total Variation Diminishing 
U velocity at cell face i 
Transport velocities in x, y 
directions respectively. 

Greek symbols 

γ 
ΓΦ 
∆Xij 
∆Yij 
ρ 
Φ 
Φ 
Φ1 

Blending factor 
Diffusivity 
Distance between i,j in direction x 
Distance between i,j in direction y 
Density 
General transported variable 
Normalized variable 
Value of Φ at cell face i 

INTRODUCTION 

It is well known that numerical diffusion errors, caused by the use of first order upwind 
scheme (referred to as FOU below) for the discretization of the convection terms of transport 
equations, can impart significant errors to fluid flow predictions, especially when associated 
with significant skewness between velocity and grid lines, see for example Huang et al.1. The 
approaches used to remedy the problem are mesh refinement and adoption of finite difference 
schemes with a higher formal order of accuracy than FOU. 
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Mesh refinement is feasible to apply in two dimensional plane or axisymmetric problems, 
but is difficult to employ in three dimensional problems; especially when, beside the equations 
which describe turbulent flow fields, additional equations modelling complex physical 
phenomena (combustion, heat transfer, radiation etc.) are to be solved. 

Schemes with higher order truncation errors than FOU have been proposed and employed 
as an alternative in an attempt to remedy the numerical diffusion problem. The desired 
properties such schemes must have are: transportiveness (when convection becomes more 
dominant than diffusion, upstream nodes have more influence than downstream ones); 
conservativeness (when the flux across any cell face is uniquely determined for the two 
adjacent control volumes), boundedness (when in the absence of any source term, the grid 
node values remain between the minimum and maximum boundary values) and accuracy. The 
combination of these properties is not an easy task, since they are contradictory to each 
other. For example, higher order schemes are capable of reducing numerical diffusion errors 
(high accuracy), but they are susceptible to numerical instabilities (violation of boundedness 
property), making the convergence of the whole iteration procedure for Navier-Stokes 
solution, very difficult or even, sometimes, impossible. 

Two of the higher order schemes, that have been used the most in the literature, are the 
QUICK scheme of Leonard2 and the second order upwind scheme (referred to as SOU 
below). Curve fitting methods are used to approximate the cell face values: linear polynomial 
for SOU and quadratic for QUICK. Both schemes have higher formal order of accuracy than 
FOU; 3rd order for QUICK and 2nd order for SOU. Both violate the boundedness property. 
In a comparative study between the two schemes, several investigators (Shyy3, Castro and 
Jones4) have found that SOU is considered better when judged with respect to accuracy and 
computational stability. 

Accuracy is greatly affected by the way the scheme is implemented in a computational 
code. Shy et al.5 have compared three versions of the SOU scheme (all having the same 
formal order of accuracy) and found that the best results are obtained when the conservative 
version of SOU is implemented in a way consistent with the control volume formulation. 
Vanka6, on the other hand, found that the SOU scheme does not yield satisfactory accuracy 
when solving the two-dimensional cavity flow problem for several Reynolds numbers and 
finite difference grids. He, however, employed a non-conservative version of the scheme. 

In the flux-spline method of Varejao7, the distribution of the dependent variable is not 
determined by curve fitting polynomials. It is obtained by solving a simplified form of the 
governing equation which is based on the assumption that within a control volume the total 
convection and diffusion flux varies in a piece wise linear manner. The resulting variation of 
the dependent variable contains an exponential term and a linear term. The scheme has been 
tested in a number of test cases (Varejao7) and found to give accurate results. It, however, 
violates the boundedness property. 

The presence of wiggles (overshoots and undershoots), indicate that the employed 
numerical grid is not fine enough to properly resolve local steep gradients of the transported 
variable. Gresho et al.8 point out that wiggles may even be looked upon as an advantage 
since at least they give an indication on the location of the flow field where the mesh cannot 
resolve the steep gradients and subsequently suggest the regions where local refinement is 
necessary in order to eliminate wiggles. On the other hand, a diffusive solution does not give, 
a clear indication of the critical regions of the flow, unless a method is employed to access the 
local numerical diffusion error a posteriori, as is done by McGuirk et al.9. However, the 
boundedness of the solution is a very important characteristic since it enhances convergence 
and it enables the scheme to be used to all transport equations including turbulence kinetic 
energy, its dissipation rate, species concentrations, enthalpy etc. whose values must always be 
positive. Use of unbounded schemes cause unrealistic negative values for these quantities. 

Several methods exist which remove spurious oscillations from the solutions of higher order 
schemes and thus account for the boundedness property. For steady state calculations of 
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incompressible flows, the flux blending technique (documented in Benodekar et al.10) and the 
satisfaction of the convection boundedness criterion (Gaskell and Lau11, Leonard and 
Niknafs12) are the two most widely used methods. For example, in the LODA scheme of Zhu 
and Leschziner13, a flux blending technique is employed between QUICK and FOU in order 
to obtain a bounded version of QUICK. Similarly, Peric14 has developed a flux blending 
technique, which he employed to QUICK and SOU. On the other hand Gaskell and Lau11 

used the convection boundedness criterion in order to construct the SMART scheme, which 
effectively removes over- and undershoots from QUICK. Zhu and Rodi15 developed the 
SOUCUP scheme, which is essentially a combination of FOU, central difference and SOU, 
with the switch from one scheme to the other being controlled by the convection 
boundedness criterion. 

For explicit time marching algorithms (used especially for compressible flows), the F.C.T. 
(Flux Corrected Transport) method of Boris and Book16 and Zalesak17 or the F.R.A.M. 
(Filtering Remedy and Methodology) algorithm of Chapman18 have been used. Sharif and 
Busnaina19 have used both the F.C.T. and F.R.A.M. methods to eliminate oscillations from 
the skew upwind scheme of Raithby20 and from the SOU scheme. The F.C.T. algorithm 
effectively treats the dispersion problem for both schemes but the F.R.A.M. method fails when 
employed to the SOU scheme. 

Finally, schemes that have T.V.D. (Total Variation Diminishing) properties are also 
monotonicity preserving schemes (Harten21). Sweby22 introduced sufficient conditions for 
schemes to have such properties and portrayed these conditions on the Sweby diagram. The 
close relationship between the Sweby T.VD. diagram and the convection boundedness 
criterion are presented by Leonard23. Based on this similarity, the SOUCUP scheme of Zhu 
and Rodi15 is identical to the Roe's T.V.D. minmod scheme in the steady state case. 

The scope of the present paper is to propose a method which combines the flux blending 
technique (between SOU and FOU) and the convection boundedness criterion for the 
production of a wiggle free scheme, which is called BSOU. The scheme is formulated so that 
it can be directly applicable to algorithms for incompressible flows. 

In what follows, a description of the mathematical formulation of the BSOU scheme is 
given, its relation to existing T. V.D. schemes is discussed and results are presented, from 3 test 
cases, which illustrate the scheme's performance in simple and complex flows. 

MATHEMATICAL FORMULATION. DIFFERENTIAL EQUATIONS AND 
DISCRETIZATION 

The general form of transport equation of variable Φ in two-dimensional Cartesian system is: 

(1) 

where U, V are the transport velocities in the x, y direction respectively, ΓΦ is the diffusivity 
and SΦ denotes the source term. 

The discretized form of equation (1) is deduced by integration over the control volume 
shown in Figure 1, and assumes the form: 

(2) 
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where each quantity inside the brackets is calculated on the corresponding face of the control 
volume. 

The calculation of the derivative ∂Φ/∂x, ∂Φ/∂y etc. is made using central differences, i.e.: 

(3) 

As far as approximation of the cell face values of variable Φ is concerned, several 
alternatives exist. For example for the FOU scheme: 

(4) 

i.e. the cell face value is equal to the upstream value, while for the SOU scheme: 

(5) 

i.e. the cell face value is calculated from linear extrapolation of the two upstream values. 
Similar approximations hold for the rest of the cell face values. 

Substituting (3) and (4) or (5) along with their counterparts for the other cell faces, into (2), 
the finite difference equations for SOU and FOU are obtained, respectively. 

The SOU yields unbounded solutions while FOU is unconditionally bounded. In the next 
paragraph, a method which combines the two schemes and yields monotone solutions at an 
insignificant penalty to SOU's non diffusive characteristics, is presented. 

DEVELOPMENT OF THE BSOU SCHEME 

The BSOU scheme relies on the convection boundedness criterion. A brief description will 
now be given for that criterion. 
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Consider the control volume surrounding the point P in Figure 1. Assuming ue > 0, the 
normalized variable is defined as: 

k = W,w,P,e,E (7) 

Each scheme is presented in the plane by the function . If f is a 
continuous increasing function, the scheme is bounded if: 

(a) for and f(0) = (0), f(1)1 = 1. 
(b) for 
The scheme is shown diagrammatically in Figure 2. The line and the shaded area 

are the regions where the criterion is valid. 
The SOU in normalized variables is expressed as: 

(7a) 
where ξ = ∆XPe/∆XWP, while the FOU as: 

(7b). 
Simple inspection of Figure 2 reveals that the SOU scheme satisfies the criterion only 

when , while outside this region the criterion is not fulfilled. Thus 
problems appear in the region [1/(1 + ξ),1] where . It is in this region, where the 
blending factors γ, between SOU and FOU are introduced. The idea behind the blending 
factors is simple: at each cell face, the resultant flux is obtained by blending the flux 
obtained from a low order unconditionally bounded scheme (FOU) with the flux determined 
from a higher order, but more accurate scheme (in this case SOU). The question to be 
answered is how the local value of γ is to be determined for each cell face. This is done 
simply by letting: 

(8) 

This is the equation that is used to calculate the blending factor, γe for the face e, in 
such a way that the resulting scheme is always bounded. Graphic representation of the 
scheme in plane is shown in Figure 2. This representation reveals that in the 
steady state case, BSOU is identical to the Chakravarthy-Osher23 scheme and the 
ULTIMATE-Second Order Upwind of Leonard23. However, while the two previous schemes are 
applicable only to time marching procedures (used mainly for compressible flow calculations), 
the present scheme is directly applicable to TEACH-like procedures which are extensively used 
in the area of incompressible flow calculations. 

Concluding, is given by the following formula: 

(9) 

For γe = 0 the scheme reduces to FOU while for γe = 1 the scheme becomes SO U. The blending 
factors are automatically adjusted during the iteration process and are evaluated only in those 
regions of the flow field where spurious oscillations are likely to occur. 
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It is evident from the previous analysis that the resulting scheme is non-linear; for the γe 
calculation one must already know It is for this reason that, even for linear problems, it is 
necessary to perform an iterative process for convergence. The non-linearity may also need the 
introduction of under-relaxation in order to obtain a converged solution. 

The form of the finite difference equations for the BSOU scheme is: 
AP ΦP = AE Φ£ + Aw ΦW + AN ΦN + As Φs + AEE ΦEE + Aww Φww + ANN ΦNN + Ass Φss + SU 

(10) 
where: 

AP = AE + Aw + AN + As + AEE + Aww + ANN + Ass 

AWW = –max(0,CW x ∆XWw/∆XWW-w x γw) 
AEE = –max(0, –CE x ∆XeE/∆Xe_EE x γe) 

Aw = max(0, CW x (1 + ∆XWw/AXWW-w x γw) + max(0, CE x ∆XPe/∆XWP x γe) + DW 
AE = max(0, –CE x (1 + ∆XeE/∆Xe-EE x γe)) + max(0, CW x ∆XwP/∆XPE x γw) + DE 

where: 
DW= [ΓΦ]w∆Ysn/∆XWP, DE = [ΓΦ]e∆Ysn/∆XPE 

CW= [ρu]w∆Ysn, CE = [ρu]e∆Ysn 

Similar equations also hold for the rest of the coefficients. The coefficients of the most distant 
nodes are always non-positive (zero for downstream nodes and negative for upstream ones), 
while the 'principal' coefficients are always positive and diagonal dominance exists. The matrix 
of the finite difference equations can be cast in the well known five diagonal form if the terms 
involving the remote nodes are incorporated into the source term. In this way, the system can 
be solved by standard iterative techniques like ADI. 

Since the scheme involves 5 points in each direction (x, y), special treatment must be given to 
grid nodes near the boundary planes. In the present study, the FOU approximation was applied 
to all boundaries. This was done because of ease of implementation (simply by setting the 
blending factor equal to zero) and because boundary conditions of higher order, although having 
increased accuracy, cause numerical instabilities, Hayase et at24. 

The proposed scheme is transportive, because only upstream influence is accounted for, 
conservative and bounded because it fulfills the above criterion and this accounts for the 3 out 
of the 4 properties stated in the introduction. Its accuracy is demonstrated in the next section. 

TEST CASES AND RESULTS 

Two linear and one non-linear case have been examined. All cases involve convective dominance, 
significant stream-grid line skewness and steep gradients of the transported variables. The 
problems selected are ones for which either analytic solutions or well established numerical 
results exist, so that the accuracy of the predictions can be judged. Turbulent flow fields are not 
simulated so that differences from the exact solutions are solely attributed to the properties of 
the numerical schemes. 

a) Pure convection of a step profile 
This is a simple, yet very stringent, test problem. It involves the pure convection of a step 

profile by a unidirectional and uniform flow field, which forms an angle θ with the horizontal 
axis X, Figure 3a. The Peclet number is infinite (meaning that physical diffusion is absent). This 
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test problem simulates the case where two parallel streams of equal velocity but unequal 
temperatures come in contact. The diffusion coefficient of the medium is zero. If the diffusion 
coefficient were not zero, a mixing layer would form in which the temperature gradually changes 
from the higher value to the lower one. Since the diffusion coefficient is zero, no mixing layer 
should form and the temperature discontinuity should persist in the streamwise direction. This 
means that the formation of a mixing layer is attributed only to the numerical diffusion errors 
and not to physical diffusion. 

Figures 3b, c, d show the performance of FOU, SOU, BSOU and QUICK by comparing the 
profile at X = 0.5 obtained with each of these schemes against the exact solution, using a uniform 
21 x 21 Cartesian grid for three different angles θ = 25, 35 and 45 deg respectively. As it can 
be seen SOU produces overshoots for all angles and as θ increases, undershoots also appear. 
QUICK produces both overshoots and undershoots for all angles with the undershoots being 
more exaggerated for smaller angles. The results obtained, using BSOU, are free from both 
overshoots and undershoots while preserving the step resolution of SOU. This observation is 
very important since it indicates that the exact amount of FOU is added to SOU in order to 
make the solution wiggle free. FOU, although it produces a monotone profile, fails to accurately 
capture the sharp increase of the step profile leading to a smeared solution which is seen to be 
most severe at θ = 45 deg. 
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b) Pure convection of a box profile 
This test case was selected in order to investigate the performance of the three schemes in the 

case where a localized maximum exists in the transported profile and also to check the way that 
all schemes react to mesh refinement. Again, the Peclet number is infinite. The angle of the flow 
to the horizontal direction is constant and equal to 45 deg, Figure 4a. This test problem simulates, 
for example, the transport of the turbulence kinetic energy produced in a thin shear layer. 

Figures 4b, c, d show the results obtained with the four schemes at X = 0.5 for three different 
computational grids 21 x 21, 31 x 31, 41 x 41 respectively. For all grid sizes SOU produces 
undershoots and for 31 x 31 and 41 x 41 grids also overshoots. QUICK always produces both 
undershoots and overshoots. However, for both QUICK and SOU, the response to grid refinement 
is rapid, unlike the response of FOU, which even for 41 x 41 grid fails to capture correctly the 
maximum of the profile. BSOU combines the best characteristics of FOU and SOU, producing 
a wiggle free solution without creating any physically wrong maxima and minima and at the 
same time captures the sharp box profile. 
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For both cases a) and b), in order to produce the results shown, an under-relaxation factor 
of 0.8 was employed in order to achieve fully converged solution for the BSOU scheme. The 
explanation for this was given above in the development of the BSOU scheme section. 

Figures 5 and 6 show the effect of the flow angle θ (convection of a step profile) and grid 
refinement (convection of a box profile), as expressed by the number of grid points in one 
direction, on the accuracy of FOU, SOU, BSOU and QUICK schemes, respectively. Accuracy 
is estimated by calculating the % error between the exact solution and the numerical results for 
the Φ distribution at X = 0.5. The %error is defined as: 

(11) 

where N is the number of grid points in the Y direction. The points I = 1, N have been excluded 
since they represent the boundary conditions. Also excluded are points whose Y position coincides 
with the location of discontinuities since the Φexact is not defined at these points. Accordingly, 
in such cases, the denominator of (11) also changes in order to conform to the number of 
summations in the nominator. From both figures it can be seen that QUICK always produces 
better results than SOU which is expected since it has a higher formal order of accuracy than 
SOU (third compared to second order). Also BSOU yields in both cases better results than SOU 
which means that the boundedness of the solution increases accuracy. The relative accuracy of 
BSOU and QUICK depends on the test case: for the convection of the step profile BSOU is 
more accurate while for the convection of the box profile QUICK is more accurate. In all cases 
the accuracy of SOU, BSOU and QUICK are comparable, with small differences between their 
results which are much more accurate than the results of FOU. 

c) Flow inside a lid driven cavity 
Having assessed the performance of BSOU in linear cases, attention is turned to, practically, 

more important non-linear ones. The problem considered is that of the recirculating flow inside 
a lid driven cavity. This is a widely used test problem for checking the accuracy and stability 
of numerical methods. Five Reynolds numbers were tested (namely, 100, 400, 1000, 3200 and 
5000) in order to investigate the performance of FOU, BSOU and QUICK. For each Reynolds 
number and scheme 5 runs were made using the following meshes: 20 x 20, 30 x 30, 40 x 40, 
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60 x 60 and 80 x 80 (totally 75 runs). For all runs the SIMPLE algorithm was used and the 
solutions were assumed converged when all normalized residuals were below 10 -4. For almost 
all runs the underrelaxation factors used were 0.5 for both velocity and pressure, except for the 
runs with QUICK for which 0.3 was used for Reynolds numbers 3200 and 5000. The results 
obtained using each scheme are tested against the exact solution of Ghia et al25. 

Figures 7(a-e) show the horizontal velocity profiles at the geometric centre of the cavity for 
all Reynolds numbers, obtained with the hybrid and BSOU schemes using mesh 80 x 80. For 
the smaller Reynolds numbers (100, 400) both schemes give very accurate results. As the Reynolds 
number increases, the accuracy of the hybrid scheme deteriorates; for Reynolds numbers 3200 
and 5000 the results compare badly with the exact solution, even with the finest mesh. 
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Table 1 Strength of the primary vortex 

REYNOLDS NUMBER 

HYBRID 
BSOU 
Exact 

100 

0.1032 
0.1033 
0.1034 

400 

0.1121 
0.1134 
0.1139 

1000 

0.1066 
0.1165 
0.1179 

3200 

0.080 
0.1121 
0.1203 

5000 

0.0699 
0.1113 
0.1189 

The inability of the hybrid scheme, in capturing the variation of the horizontal velocity, has 
a detrimental effect on the strength of the primary vortex inside the cavity (as expressed by the 
minimum value of the stream function). Table 1 compares this strength as predicted using hybrid 
and BSOU (mesh 80 x 80) against the exact solution. It is seen that the strength of the primary 
vortex is more and more underpredicted by the hybrid scheme as the Reynolds number increases. 
The results of the BSOU scheme are, for all Reynolds numbers, very close to the exact results. 

The effect of the discretization schemes on the stream line pattern of the flow is depicted in 
Figure 8 (only stream lines for Reynolds 5000 are presented). It is easily seen how numerical 
diffusion affects the sizes of the recirculation zones. In particular, the vortices in the lower right 
and the upper left corner have been significantly reduced when the hybrid scheme is used. The 
effect of diffusion also manifests itself on the pressure distribution inside the cavity, as shown 
in Figure 9. This shows that diffusion not only affects the convected quantities (velocities, 
temperatures) but the pressure also. 

Figure 10 shows the accuracy for hybrid, BSOU and QUICK for Reynolds numbers 1000 and 
3200 versus grid refinement, as expressed by the number of grid points in the horizontal direction 
of the cavity (the same number of grid points were used for the vertical direction as well). For 
the hybrid scheme, the convergence towards the exact solution is very slow (a conclusion also 
been observed in case b). On the other hand, the BSOU scheme gives markedly better results 
for all meshes. Compared to QUICK, the relative accuracy seems to be case dependent (as already 
found previously in case b). In all cases the results between the two higher order schemes are 
very close to each other. The same happens also for the rest of the Reynolds numbers. 
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Finally, Figure 11 shows the accuracy against the computational time for the same Reynolds 
numbers. It is apparent that both QUICK and BSOU need more computational time than the 
hybrid scheme. This is not only due to the increased time per iteration, caused by the complexity 
of the finite difference equation coefficients, but also due to the increased number of iterations, 
especially for the BSOU scheme, caused by the non-linearity of the scheme. The curves for BSOU 
and QUICK are very close, giving the same %error for the same computer time, leading eventually 
to smaller execution times (for the same accuracy) than hybrid. The advantage of BSOU over 
QUICK is that it satisfies the boundedness property which enables it to be used for all transport 
equations as stated in the introduction. 

CONCLUSIONS 

A flux blending technique between the FOU and SOU was presented, leading to a boundedness 
preserving scheme called BSOU. The scheme comprises the best characteristics of both schemes 
and is superior than either. Presently, the scheme is used by the authors for convection terms 
discretization of all transport equations describing turbulent flow and combustion in a three 
dimensional, experimental, semi-industrial scale pulverized coal furnace, for which reliable 
experimental data exist. 
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